Author: guest

Biomimicry for Human-Computer Interaction: Insights from workshops hosted at the HTO group at Uppsala University in 2023 and 2024.

As technology continues to evolve, so do the ways people interact with it. From wearables and voice-based systems to virtual and augmented reality (VR and AR), sensors, and artificial intelligence (AI), human interaction with digital systems has transformed drastically. Simultaneously, urgent challenges affecting the health of the planet, including climate change, biodiversity loss, and inequality, has made the role of research and design in transformative change increasingly important as we pursue a sustainable, just and resilient future. These transformations push the boundaries of Human-Computer Interaction (HCI), as it necessitates the integration of the many different ways people engage with technology. Biomimicry, or biometrics, the practice of emulating forms, functions, and systems found in nature (Vincent et al., 2006), offers a unique approach to designing HCI systems that are intuitive, regenerative, and sustainable.

Why Biomimicry for HCI?

Biomimicry invites HCI researchers and designers to rethink interactions with technologies. Beyond inspiring new design aesthetics, biomimicry offers insights into designing systems that process data intuitively, sends and receives signals, respond dynamically, and adapt as living organisms do within their ecosystems. By applying design principles abstracted from nature, HCI researchers and designers can create systems that are more adaptable, environmentally responsive, and seamlessly integrated with users’ surroundings. When we incorporate these adaptive strategies into HCI, we can create interfaces that are more intuitive and efficient, using fewer resources and contributing to a regenerative approach to technology. Nature is a network of adaptive interfaces that continuously sense, process, and respond to environmental signals. Imagine if our digital systems could similarly evolve and adapt based on changes in their environment.

Workshop Highlights: Exploring Nature’s Blueprint for HCI

At two recent “Biomimicry for HCI” workshops at Uppsala University, participants delved into nature’s models of sensing, processing, and adapting to information, discovering ways to inspire “living” interfaces. In such interfaces, information is not merely displayed but dynamically revealed in response to environmental cues. The workshops aimed to:

  • Bridge biomimicry and HCI: Participants brainstormed and conceptualized interfaces inspired by natural, organic processes.
  • Go beyond screen-based interaction: Moving away from traditional, screen-centered designs, they considered how natural systems communicate, sense, and process data.
  • Design for sustainability and intuitiveness: By translating nature’s efficient, adaptive mechanisms, participants envisioned HCI systems that are integrated within their environments, where users interact with a system that feels responsive and organically integrated.

Conclusion: Toward a Biomimicry-Inspired HCI

The workshops offered new perspectives on designing HCI systems that emulate models found in nature. By emulating nature’s strategies for adaptation and sustainability, we can create HCI systems that are not only intuitive but also deeply integrated with their environments. This reframing encourages researchers and designers to approach interfaces as living entities that, like natural systems, process and adapt to sensory data fluidly, responding to users as ecosystems respond to environmental cues. Nature does more than aesthetically inspire, it offers models for creating HCI frameworks where the interface itself becomes a dynamic, living system, continuously adapting to and engaging with its surroundings.

In the rapidly evolving field of HCI, biomimicry offers an approach beyond conventional screen-based interaction toward a future where interfaces breathe, respond, and co-exist in harmony with the natural world.

If you are interested in exploring ideas in biomimicry for HCI, please reach out to Karin van den Driesche at c.j.h.m.vandendriesche@uva.nl or info@kadendesign.nl. Additionally, you can download the worksheet, Biomimicry Using Shape Change in Nature, for a hands-on approach: Download Worksheet.

Guest blog: Recommendations for the Development of Connected Health Software

Particularly as we move forward following the recent COVID-19 pandemic, there has been an increase in the use of software in healthcare systems to support healthcare management and prevention. In Ireland, for example, there has been an increase in on-line consultations with General Practitioners (GPs)/ Family Physicians. This has resulted in the submission of prescriptions directly to pharmacies, where the patient can collect their medication. This minimises human contact, which was important during the pandemic, minimises travel for patients who may have difficulty getting to the doctor’s surgery, and makes it easier for GP surgeries to cater for patients over a wider area. There is potential for such systems to expand and become more pervasive, particularly as we are seeing a decrease in the number of medical practices in rural areas and an increase in population nationally.  Those with health conditions can potentially use software to monitor their physiological measures, allowing the doctor to make decisions about their care in a different manner – thus software development and support must become more efficient and effective.

Healthcare software for use by individual patients is increasingly coming in the form of apps on the smartphone – therefore, the needs of particular cohorts need to be accounted for. In our research in Lero – the Science Foundation Ireland Software Research Centre, we have developed fundamental requirements for the development of software for use by Older Adults and for Persons with Mild Intellectual and Developmental Disability. Why these cohorts? We know that the number of Older Adults is increasing globally and that this is putting pressure on healthcare systems, and so it is important for software developers to take their fundamental requirements into account. Persons with Mild Intellectual and Developmental Disability have specific requirements, and there is evidence that the lack of accessibility and usability for this cohort is causing the digital divide to increase. Of course, we can consider other cohorts! For example, what about nursing staff whose primary aim is to care for the patient, do they need to be trained in system use, or can software developers consider fundamental requirements for them to ensure that they can use systems efficiently and effectively? We believe that if software developers know these fundamental requirements, which we present in the form of ‘recommendations’ for the software developer, then healthcare software developed with be ultimately ‘easier to use’ by those who really need to use it! Each recommendation developed is supported by the detail obtained through literature review, standards and regulations review, focus groups, observation, prototype review, interviews, surveys and analysis of app store comments.

In our research we have developed 44 recommendations for the development of software for Older Adults, categorised into 28 Usability and 16 Accessibility requirements, 6 of which are shown in Figure 1.

Figure 1: Six recommendations which can be used in the development of software for Older Adults

We have also developed 46 recommendations for the development of software for Persons with Mild Intellectual and Developmental Disability, categorised into 20 Usability, 16 Accessibility, 3 Content and 10 Gamification requirements, 6 of which are shown in Figure 2. Interestingly, in our qualitative research with persons from this cohort, we observed their ability to use games as a means to find out and understand information. We investigated this further, which is why we have included gamification factors.  

Figure 2: Six recommendations which can be used in the development of software for Persons with Mild Intellectual and Developmental Disability.

The full set of recommendations and relevant information is provided in two Lero technical reports which are publicly available at 2023_TR_02_Recommendations_MildIDD.pdf, and 2021_TR02_Design_Patterns_ReDEAP.pdf. We encourage healthcare software developers to consider and use these when developing healthcare software.

This is a guest blog post by Prof Ita Richardson who visited us in March 2023. Professor Ita Richardson comes from the Department of Computer Science and Information Systems, Lero – the Science Foundation Research Centre for Software and Health Research Institute/Ageing Research Centre, University of Limerick, Ireland

Relevant publications:

Leamy, Craig, Bilal Ahmad, Sarah Beecham, Ita Richardson and Katie Crowley, Launcher50+ : An Android Launcher for use by Older Adults, In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies – HEALTHINF, 2023.

Bilal Ahmad, Ita Richardson and Sarah Beecham, Usability Recommendations for Designers of Smartphone Applications for Older Adults: An Empirical Study, in Software Usability, edited by Castro, L & Cabrero, D & Heimgärtner, R, InchtechOpen, DOI: 10.5772/intechopen.96775, ISBN 978-1-83968-967-3

Ahmad, Bilal, Sarah Beecham, Ita Richardson, The case of Golden Jubilants: using a prototype to support healthcare technology research, Workshop on Software Engineering & Healthcare, co-located with International Conference on Software Engineering, 2021, 24th May, 2021.

Alshammari, Muneef, Owen Doody and Ita Richardson, 2020, August. Software Engineering Issues: An exploratory study into the development of Health Information Systems for people with Mild Intellectual and Developmental Disability. In 2020 IEEE First International Workshop on Requirements Engineering for Well-Being, Aging, and Health (REWBAH) (pp. 67-76). IEEE, 31st August.

Ahmad, Bilal, Ita Richardson and Sarah Beecham, 2020. A Multi-method Approach for Requirements Elicitation for the Design and Development of Smartphone Applications for Older Adults. In 2020 IEEE First International Workshop on Requirements Engineering for Well-Being, Aging, and Health (REWBAH) (pp. 25-34). IEEE, 31st August.

Alshammari, Muneef, Owen Doody and Ita Richardson (2020). Health Information Systems for Clients with Mild Intellectual and Developmental Disability: A Framework, Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies Volume 5: HEALTHINF, 24-26 February 2020, Valletta, Malta pp 125-132 ISBN: 978-989-758-398-

Ahmad, B., Richardson, I., McLoughlin, S. and Beecham, S., 2018, July. Assessing the level of adoption of a social network system for older adults. In Proceedings of the 32nd International BCS Human Computer Interaction Conference 32 (pp. 1-5)

Alshammari, Muneef, Owen Doody and Ita Richardson (2018). Barriers to the Access and use of Health Information by Individuals with Intellectual and Developmental Disability IDD: A Review of the Literature. IEEE 6th International Conference on Healthcare Informatics (ICHI), pp. 294-298, New York, USA, 4-7th June, DOI:10.1109/ICHI.2018.00040

Ahmad Bilal, Richardson Ita, Beecham Sarah (2017). A Systematic Literature Review of Social Network Systems for Older Adults. In: Felderer M., Méndez Fernández D., Turhan B., Kalinowski M., Sarro F., Winkler D. (eds) Product-Focused Software Process Improvement. PROFES 2017. Lecture Notes in Computer Science, vol 10611 pp 482-496, Springer, Cham https://doi.org/10.1007/978-3-319-69926-4_38.